
PARALLEL PERFORMANCE INVESTIGATIONS
OF AN UNSTRUCTURED

MULTIGRID SOLVER

D. J. Mavriplis

Institute for Computer Applications in Science and Engineering (ICASE)
NASA Langley Research Center

Hampton, VA

Co-PI, ASCI Level 2 Site
Old Dominion University

Norfolk, VA

ASCI Solvers Workshop

December 1-2, 1999, Los Alamos, NM

MOTIVATION

• Develop Large-Scale Simulation Capability using Unstructured Multigrid Solver

– Large-Eddy Simulation (up to 109 Grid Points)

– Radiation Transport Solver (Diffusion Approximation)

• Implement Combined MPI-OMP Domain Based Parallelization Strategy

– Suitable for Hybrid Shared-Distributed Memory Systems

• Benchmark on Currently Available Architectures

• Evaluate New Architectures as they become Available

OVERVIEW

• Governing Equations, Discretization

• Multigrid Solution Algorithm

– Agglomeration

– Anisotropic

• Combined MPI/OMP Parallelization

• Benchmark Results

– Up to 2048 Processors

– Up to 25 million points, 125 million unknowns

BASE SOLVER

• Governing Equations : Reynolds-Averaged Navier-Stokes

– Conservation of Mass, Momentum, Energy

– Single Equation Turbulence Model (Spalart-Allmaras)

∗ Convection-Diffusion-Production

• Vertex-Based Discretization

– 2nd order upwind finite-volume scheme

– 6 variables per grid point

– Flow equation fully coupled (5× 5)

– Turbulence equation uncoupled

BASE SOLVER

• Mixed Element Grids

– Tetrahedra, Prisms

– Pyramids, Hexahedra

• Edge Data-Structure

– Building Block for All Element Types

– Lower Memory Overheads

– Higher Computational Rates

• Explicit Multi-Stage Time-Stepping (Preconditioned)

CONVERGENCE ACCELERATION

• Agglomeration Multigrid

– Automatic Coarse Level Construction

• Line-Implicit Solver / Jacobi Preconditioning

• Low Mach Number Preconditioning

• Non Linear GMRES (using above solver as a preconditioner)

AGGLOMERATION MULTIGRID

• Principal Convergence Acceleration Ingredient

• Grid Independent Convergence Rates

• Low Memory Overheads

– No Explicit Linearization (FAS)

• Latency Tolerant

– Based on Sequence of Coarse-Fine Grids

– Explicit (or Locally Implicit) Solver on Each Grid Level

AGGLOMERATION MULTIGRID (Non-Linear Problems)

Agglomerated

Seed Point

 Points

• Merge Control Volumes to Form Coarse Levels

– Graph-Based AMG Coarsening

• Transfer between Grid Levels via Piecewise Constants

• Coarse Level Eqns obtained by Summation of Fine Level Eqns

– Algebraic summation of solution independent terms

– Restriction of Solution Dependent Terms (FAS)

ANISOTROPY-INDUCED STIFFNESS

• Convergence Rates for High-Reynolds Number Flows Much Slower

– Mainly Due to Grid Stretching ≈ O(104)

• Standard Techniques for Anisotropic Problems

– Directional (Semi) Coarsening Multigrid

– Directional (Line) Solvers

IMPLICIT LINE PRECONDITIONING

• Graph Algorithm Used to Construct Lines in Regions of High Grid Stretching

• Implicit System Solved Along Lines

• Reduces to Jacobi Preconditioning in Isotropic Regions

NON-LINEAR GMRES ALGORITHM

• Preconditioned Multigrid Algorithm May be Used as Preconditioner to

Non-Linear GMRES

• Potential Speedup in Convergence

• Incurs Additional Memory Overheads (Storage of Search Directions)

– GMRES (20) requires ≈ 50% increase in Memory

• Simple Parallelization Strategy

– Non-Linear Function Evaluations Already Parallelized

– Low Order (20) Least Squares Problem Performed Redundantly on

Each Processor

PARALLEL IMPLEMENTATION

• Domain Decomposition using MPI and/or OpenMP

– Portable, Distributed and Shared Memory Architectures

Communication Path

Partition
Boundary

Ghost
Vertex

Created Internal Edges

• Weighted Partitioning to Avoid Intersected Line Edges

– CHACO, MeTiS

• Coarse and Fine Multigrid Levels Partitioned Independently

PARTITIONING

• Contract Graph Along Implicit Lines

• Weight Edges and Vertices

V=3

E=3E=2

E=2

• Partition Contracted Graph

• Decontract Graph

– Guarantees Lines Never Broken

– Possible Small Increase in Imbalance/Cut Edges

PARTITIONING EXAMPLE
• 32-Way Partition of 30,562 Point 2D Grid

• Unweighted Partition: 2.6 % Edges Cut, 2.6 % Lines Cut

• Weighted Partition: 3.2 % Edges Cut, 0 % Lines Cut

PARTITIONING FOR MULTIGRID

• Partition Fine Grid Level

• Partition Coarse AMG Level Graphs

• Nested Levels

– Fine Level Partition Could Be Used to Infer Coarse Level Partitions

– Optimizes Inter-Level Communication

• Partition Levels Independently

– Optimize Intra-Level Communication

– Heuristic Procedure to Match Coarse/Fine Level Partitions

PRE-PROCESSING REQUIREMENTS

• Pre-processing Operations

– Construction of Coarse AMG Levels

– Construction of Implicit Lines

– Partitioning of Mesh Levels

• Minimal CPU-Time Requirements

• Memory Requirements Comparable to Flow solver

• Considerable Logic for Parallelization

• Benefits of Shared-Memory Paradigm

– Run Sequentially

– Access Large Amounts of Off-processor memory

• Will Eventually Require Parallelization

SINGLE PROCESSOR OPTIMIZATIONS

• Scalar Microprocessors

– Vertices and Edges Reordered for Locality

– RCM-type algorithm : Factor 2 speedup on Sun Workstation

• Vector Processors

– Vertices Reordered for Locality

– Edges Sorted into Non-Recurrent (vectorizable) Groups

– Line Solves performed in (vector) Groups of 64

• Sample Performance (1 grid level)

– MIPS R10000 (250Mhz): 75 Mflops

– Pentium II (400Mhz): 50 Mflops

– Cray SV1 Vector Processor: 225 Mflops

RELATIVE EXECUTION TIME OF VARIOUS

MICRO-PROCESSORS

• 3D Unstructured Multigrid Algorithm on 177K Grid

PARALLEL PROGRAMMING MODELS

• MPI: Distributed Memory

• OpenMP: Shared Memory

• Mixed Model: Clusters of Shared-Memory Multiprocessors

– Dual CPU Pentium Clusters

– ASCI Machines

• cc-NUMA Architecture (SGI Origin)

– Logically Shared

– Physically Distributed

EXTENDING MPI CODE TO MIXED MPI-OpenMP MODEL

• MPI Process Rewritten to Handle Multiple Domains

– Sequentially

– In Parallel Using OpenMP

• Flexibility

– Run MPI or OpenMP Exclusively

– Run Two-Level MPI-OpenMP Model

– Sequential Capability

∗ Number of Domains can be Multiple of Number of Processors

• Entirely Domain-Based Parallelism

OVERALL CODE STRUCTURE
-

include OMP DIRECTIVE
do : Loop over number of partitions

do : Loop over number of vector groups
do : Loop over edges in a vector group

n1 = edge end(1,iedge)
n2 = edge end(1,iedge)
flux = function of values at n1,n2
residual(n1) = residual(n1) + flux
residual(n2) = residual(n2) - flux

enddo
enddo

enddo
c
include OMP DIRECTIVE
do : Loop over number of partitions

call OMP communicate
enddo
c
include OMP DIRECTIVE
do : Loop over number of partitions

call MPI communicate
enddo

• Entire Code OMP’ed with 2 or 3 Directives

• Distinct Partition Loops (instead of OMP BARRIER) enables

Code to run Sequentially

OPENMP COMMUNICATION (within an MPI Process)

• Arrays Span All Local Partitions/Threads

• Pointers used to Identify Extent of Each Partition/Thread

• Local Indices (relative to pointers) used in Computation Loop

• Global Indices Used for Communication

• Communicate by Copying Selected Values to Specific Locations in Global Array

POINTER TO

G L O B A L A R R A Y

POINTER TO
PARTITION 1 PARTITION 2

POINTER TO
PARTITION 3 PARTITION 4

POINTER TO

COMMUNICATION BETWEEN MPI PROCESSES

• Thread to Thread MPI Messages

– Each Thread Sends to/ Receives from:

∗ An MPI Process

∗ A Thread Id (implemented as message tag)

• Entirely Parallel Provided MPI Implementation is THREAD-SAFE

MPI PROC 1

THREAD 1 THREAD 2 THREAD 3

MPI_RECV

THREAD 1 THREAD 2 THREAD 3

MPI PROC 2

MPI 2 THREAD 1 MPI 1 THREAD 2
MPI_SEND

MIXED MODEL COMMUNICATION

• MPI Communication Reduced by Intra-Process OMP Communication

• Partitions should be Mapped to:

– Maximize Intra-Process OMP Communication

– Minimize Inter-Process MPI Communication

• Output Weighted Communication Graph (between all Partitions)

– Partition Communication Graph Using METIS/CHACO

– Identifies Groupings of Partitions

• METIS Partitions Numbered Naturally for Locality

– Simple Blocked Mapping of Metis Partition Numbering Produces Equivalent

(or Better) Results to Explicit Partitioning of Communication Graph

PARALLEL SCALABILITY RESULTS

• MPI Alone on ASCI Machines, SGI O2K, T3E

• Comparison of MPI versus OpenMP Performance on Shared

Memory Machines: SGI Origin, Cray SV1

• Mixed OpenMP/MPI on SGI Origin, Dual CPU Pentium Cluster

• Effect of Problem Size

– 177,000 Point Problem

– 3 million and 3M × 8 = 24M Point Problems

RAE-WING TEST-CASE

 0 100 200 300 400 500 600

Number of MG Cycles

 -
14

.0
0

 -
12

.0
0

 -
10

.0
0

 -
8.

00
 -

6.
00

 -
4.

00
 -

2.
00

0.

00

L
og

 (
E

rr
or

)

EXPLICIT FULL COARSENING AMG

DIRECTIONAL IMPLICIT AMG

• 177,837 Vertices (Mixed Hexahedra and Prisms)

• 67 % Fine Grid Points Belong to Lines

• Order of Magnitude Faster than Isotropic Scheme

• Mach = 0.73, Incidence = 2.31 degrees, Reynolds = 6.5 million

FULL AIRCRAFT HIGH-LIFT CONFIGURATION

• Mixed Prismatic-Tetrahedral Mesh

• Fine Mesh: 3.1 million points, 18 million tetrahedra

• Coarse Mesh: 24.7 million points, 145 million tetrahedra

CONVERGENCE HISTORIES

• Coarse Mesh: 4 orders on 600 Multigrid Cycles

• Fine Mesh: Similar to Coarse Mesh

– Grid Independence Property of Multigrid

• Beneficial Effects of GMRES for Coarse Grid

– Insufficient Memory for GMRES on Fine Mesh

RAE WING SCALABILITY RESULTS

0 20 40 60 80 100 120 140
NPROC

0

20

40

60

80

100

120

140

S
P

E
E

D
U

P

SINGLE GRID
MG V-Cycle
MG W-Cycle
IDEAL

0 50 100 150 200 250 300 350 400 450 500 550
NPROC

0

50

100

150

200

250

300

350

400

450

500

550

S
P

E
E

D
U

P

SINGLE GRID
MG V-Cycle
MG W-Cycle
IDEAL

• Good Scalability up Moderate Number of Processors

• Increased Communication for MG Coarse Levels

– Small Problem Size; On 512 Processors:

– Fine Level: 348 points per processor

– Coarse Level: 13 points per processor

3 M POINT SCALABILITY RESULTS

0 20 40 60 80 100 120 140
NPROC

0

20

40

60

80

100

120

140

S
P

E
E

D
U

P

SINGLE GRID
MG V-Cycle
MG W-Cycle
IDEAL

0 50 100 150 200 250 300 350 400 450 500 550
NPROC

0

50

100

150

200

250

300

350

400

450

500

550

S
P

E
E

D
U

P

SINGLE GRID
MG V-Cycle
MG W-Cycle
IDEAL

• Good Scalability up to Maximum Number of Processors

– Larger Problem Size

• Increased Communication for MG Coarse Levels

• MG W-Cycle Always most Efficient Overall

SCALABILITY OF 3M POINT AIRCRAFT CASE

0 100 200 300 400 500 600 700 800 900 1000
NPROC

0

100

200

300

400

500

600

700

800

900

1000

S
P

E
E

D
U

P

SINGLE GRID
MG W-Cycle
IDEAL

ASCI Blue Pacific (IBM 332 Mhz)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
NPROC

0

200

400

600

800

1000

1200

1400

1600

1800

2000

S
P

E
E

D
U

P

SINGLE GRID
MG W-Cycle
IDEAL

ASCI Red (Pentium Pro 333 Mhz)

• ASCI Blue: Good Scalability up to 256 Processors

• ASCI Red: Good Scalability up to 2048 Processors

• Scalability Improves for Larger Problems

• Increased Communication for MG Coarse Levels

• Coarsest Grid = 1651 Points

SCALABILITY OF 3M POINT AIRCRAFT CASE

0 50 100 150 200 250
NPROC

0

50

100

150

200

250

S
P

E
E

D
U

P

SINGLE GRID
MG W-Cycle
IDEAL

ASCI Blue Pacific (IBM 332 Mhz)

0 50 100 150 200 250
NPROC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
A

T
IO

SINGLE GRID: Ratio of 1 to 4 cpu/node
MULTIGRID: Ratio of 1 to 4 cpu/node
IDEAL

ASCI Blue Pacific (IBM 332 Mhz)

• ASCI Blue: Good Scalability up to 256 Processors

• Slight Degradation due to 4 Shared Memory PEs

SCALABILITY OF 25M PT AIRCRAFT CASE ON T3E-1200E

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

NPROC

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

S
P

E
E

D
U

P

SINGLE GRID
5 Level MG W-Cycle
6 Level MG W-Cycle
IDEAL

• Dec Alpha 600 Mhz Processors

• Good Multigrid Scalability up to 1450 PEs

• Coarsest Grid = 2208 Points

• 82 Gflops on 1450 PEs (estimated)

ICASE BEOWULF PC CLUSTER

• 32 Pentium II (400Mhz), 8 Gbytes Aggregate RAM

• Fast Ethernet Interconnect

• Total Cost: $50,000

• Scalability of 3D Unstructured Multigrid Algorithm on 177K Grid

• ≈ 1.5 Gflops on Large Unstructured Problems

SAMPLE TURNAROUND TIMES

• 3 Million Point Aircraft on ASCI Red (1024 Processors)

– 21 minutes for 500 Multigrid Cycles

• 25 Million Point Aircraft on T3E-1200E (1450 Processors)

– 63 minutes for 500 Multigrid Cycles

– 29 minutes for I/O

– 9 Gbyte Input File

• Possibility of running over 100 Million Grid Points

• Bottlenecks to be Addressed:

– Sequential Preprocessing

– File I/O, Network File Transfer

COMPARISON OF MPI and OPENMP on CRAY SV1

2 4 6 8 10 12 14 16 18 20
NPROC

2

4

6

8

10

12

14

16

18

20

S
P

E
E

D
U

P

OpenMP
MPI -np
MPI -nt
IDEAL

• Vector Machine with Uniform Access Memory

• Two Vendor MPI Implementations

– MPI -np : Unix Sockets

– MPI -nt : Shared Memory Communication

• 177K Point Grid, No Multigrid

MPI vs. OPENMP ON SINGLE BOX OF ASCI BLUE MOUNTAIN

20 40 60 80 100 120 140
NPROC

20

40

60

80

100

120

140

S
P

E
E

D
U

P

OpenMP Alone
MPI Alone
IDEAL

• OMP Uses Parallel Initialization (first touch memory placement)

• 3.1 million Point Grid, No Multigrid

ISSUES AFFECTING PERFORMANCE

• Memory and Processor Placement on SGI Origin

– Used NASA-SGI Tools for Placement

∗ LIBNUMA: mmci, proc, refcnt, mld, mldset, pm, pminfo, numa

– Requested Processor Placement Not Guaranteed

– Minimum Memory Placement Page Size

– Exact Memory Boundaries Cannot Be Prescribed

• Cray SV1 Architecture

– Physically Shared Memory Architecture

– Placement not an Issue

– MPI Performance Dependent on Vendor Implementation

ISSUES AFFECTING PERFORMANCE

• Superlinear:

– Based on Single CPU Speed

– 5 Gbytes of Memory Required

– Off-Processor Memory Access

• Processor Placement Important

– OS Processor Placement for 8 CPU RUN: 86.9 secs/cycle

– Explicit Processor Placement for 8 CPU RUN: 60.3 secs/cycle

∗ 1 Thread per Memory Node

– MPI using OS Processor Placement : 61.6 secs/cycle

COMBINED MPI-OpenMP ON ASCI BLUE MOUNTAIN

20 40 60 80 100 120 140
NPROC

20

40

60

80

100

120

140

S
P

E
E

D
U

P
OpenMP Alone
MPI Alone
MPI 2
MPI 4
MPI 8
MPI 16
MPI 32
MPI 64

• 3.1 million Point Grid, No Multigrid

MPI/OpenMP PERFORMANCE

• OpenMP and MPI Perform Equivalently on SV1, O2000

– Validates OMP Implementation

• Combined MPI-OMP Cases Show Degradation

– Current Origin 2000 MPI Implementation NOT Completely THREAD-SAFE

∗ Individual Thread MPI Calls are Sequentialized

∗ Degradation Increases with Number of Threads

∗ Acceptable for Small Numbers of Threads : Dual CPU Pentiums

• Requested Processor Map Not Always Held

– Initialized Memory No Longer Local

– Processes Double up On Single Processor (MPI 64, OMP 2)

MULTI-BOX PERFORMANCE ON ASCI BLUE MOUNTAIN

200 400 600 800 1000
NPROC

200

400

600

800

1000

S
P

E
E

D
U

P

3 Million Pt Case
24 Million Pt Case
IDEAL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
IM

IN
G

R
A

T
IO

256 / 32 CPUS
512 / 64 CPUS
1024 / 128 CPUS

• MPI Alone

• Improved Performance for Larger Problem

• Reasonable Scalability with Problem Size

EFFECT OF THE NUMBER OF BOXES (MPI ALONE)

0 2 4 6 8 10
Number of 128 CPU Boxes

100

125

150

175

200

225

250

275

300

S
P

E
E

D
U

P

3 M pt Case :128 CPUS
3 M pt Case: 256 CPUS
3 M pt Case: 512 CPUS

• Performance Improves Slightly with More Boxes

• Intra-Box Communication is Bottleneck

• Difficulty Maintaining Shared Mem Processor Map

MIXED OMP-MPI ON MULTIPLE BOXES

200 400 600 800 1000
NPROC

200

400

600

800

1000

S
P

E
E

D
U

P
IDEAL
MPI ALONE
MPI 512 (64 per Box)
MPI 256 (32 per Box)
MPI 128 (16 per Box)
MPI 32 (4 per Box)
MPI 8 (1 per Box)

• Difficulty Maintaining Shared Mem Processor Map

• MPI Not Entirely THREAD-SAFE

CONCLUSIONS

• Current Code Supports Scalar and Vector, MPI and OpenMP

• Best Scalability Obtained on ASCI Red, T3E Machines

• Best Scalability Obtained with MPI Alone

(even on clustered SMPs)

• OMP and MPI Equivalent on Truly Shared Memory Machines

• OMP and MPI Equivalent on NUMA Machines Provided Mem-

ory is Initialized Accordingly and Processes do not Migrate

• Good Combined MPI-OMP Performance Requires:

– 100 % THREAD-SAFE MPI

– Ability to Explicitly Map Memory and Processes

